
loo 

(4.3) 

From (1.2) it follOWS that if E&226, then A,>&A,)A,. 
Calculatingthe derivatives aHI@, FEJ6tWs we conclude that a maximum of x is always 

reached at one point for all cases except a) fl=i,R,=O b) P= --1,R,=O. Therefore, the 
solutions of the split and initial problems agree if there are no sections on the optimal 
rod on which conditions a) or b) are satisfied. For case a) an entire cone of values of T$ 
exists on which H reaches a maximum (Fig.3a). For case b) two values of the vector rs exist 
on which H reaches a maximum (Fig.3b). 

Example. Let us consider the case when Bk=oIPi= mi=~ and boundary conditions (1.71 
for P,=o. 

The optimal rod has the form 1 (Fig.4a) in the minimization problem B(r). Besides this 
solution, there is also a generalized solution 2 (Fig.4a). In addition to solutions with 
breaks, a smooth optimal solution can also be constructed. Condition a is realized for these 
optimal solutions. 

The optimal rod has the form 1 (Fig.4b) for the maximization problem B(Z). In addition 
to this solution, there is also the generalized solution 2 (Fig.Qbf. Condition b is realized 
for these optimal solutions. 
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ON SY~~TRIC.~D EON-S~~~TRIC CONTACT PROBLEblS 
OF THE THEORY OF ELASTICITY* 

V.M. ALEKSANDROV and B.I. SMETANIN 

Contact problems of the theory of elasticity can be subdivided into two 
major classes: symmetric contact problems for which the kernel of integral 
equations of the convolution type are even or odd functions, and non- 
symmetric contact problems for which the kernels are given by the sum of 
odd and even functions, Certain problems from this latter class were 
apparently examined first in /l-3/. In this paper a general approach 
to their study is given and an approximate solution is constructed: the 
results are demonstrated in two new problems. 

1. As is well-known /4-6/, may plane and axisymmetric contact problems of the theory 
of elasticity reduce to determining the contact forces from an integral equation of the first 
kind with a different kernel of the form 

11.2) 
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Here q(z) is the dimensionless contact force, 1 is the dimensionless geometric or 

physicomechanical parameter, f(s) i s a function governed by the contact condition, and K(c) 

is an analytic function of the complex variable 5 = u + iv which is even and real on the real 

axis. 
The majority of static contact problems-encountered for the behaviour of the symbol K(6) 

of the kernel (1.2) at zero and infinity on the real axis can be divided into three groups 

K (u) + I u I -I ( 1 u I + w), K (u) + A (u + 0) (1.3) 

K (u) --f / u I -l ( I u I + m), K (u) + B I u I -I (u + 0) (1.4) 

K (u)+ I u I -I ( 1 u I + oo), K (u)+ Cu* (u + 0) (1.5) 

where A,B and C are constants. Cases (1.3) and (1.4) have been studied in detail /4, 7/. 
We will investigate case (1.5) in detail in this paper. 

Let us consider the auxiliary integral 

Je(i)= ‘ae’Ftd( (&> 0) a (1.6) 

over the contour r in the plane of the complex variable 6, where U(c) is an analytic func- 
tion increasing as 15 I on a regular system of contours C,C C,+r as n- 00 /4, 8/, and 
is even and real on the real axis. 

Let the contour I? have the form shown in Fig.1 (c> 0). Then assuming that the function 
a (5) is regular within the domain outlined by the contour r, and using the theoryofresidues 
we find 

JE (t) = ne-.-'H (a) yin at (1.7) 

On the other hand, letting 1 tend to infinity and remarking that the integrals over 
the segments AB and CD vanish, we will have 

J, (t) = 

On the basis of (1.7) and (1.8) we obtain as E--+0 

k(t)+(u)cosutdu $ $ H(O)t 

0 

(1.8) 

(1.9) 

where it is assumed that H(u)= uaK(u). Analogously, if c<O, then 

Now, 
stand the 
we obtain 

k(t)=jK(u)cosvtdu--H(O)2 (1.10) 
0 

let the contour r in (1.6) coincide with the real axis (c = 0). Then we will under- 
integral (1.6) in the Cauchy principle-value sense. Here, letting e tend to zero, 

(1.11) 

We note that the integral in (1.9)-(1.11) is defined to 
within an infinite constant D that can be extracted as follows, 

Fig.1 

K (U) cos ut du = 1 K (u) (COS ut - e-u’) du + D (1.12) 
" 0 

The presence of this constant in the kernel k(t) does not enable a connection between 
the rigid translational displacement of the stamp and the force acting on it to be determined 
in problems of group (1.5) (as also in problems of group (1.41, however). 

2. Taking account of (1.9) and (l.lO), the integral equation (1.1) can be written in 
the form 

OD 

5 1s cp (E) 
-1 

K (u) cos u + du + $- H (0) 9-j dE = nf (5) 
0 

(2.1) 
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Here and henceforth, in the case of a double sign, the upper sign corresponds to c> 0, 
and the lower sign to c<O in (1.2). 

After differentiation With respect to x we obtain from (2.1) 

In (2.2), and later for c=O, the component with the double sign should be omitted. 
We introduce the notation 

fr' (5) = (nV'F (z) ( I z I > 1) (2.3) 

It can be established on the basis of Theorem 5 in Sect.3 of Ch. 1 in /g/ that 

From (2.3) and (2.4) it follows that 

(2.4) 

(2.5) 

where the constant P is considered known and defined by the integral 

P= cp(.t)fb 
s 
-1 

(2.6) 

Therefore, the position of the contour of integration in (1.2) can be determined in 
conformity with (2.5) by the conditions at infinity for the functions j,'(x). 

The effective solution of (2.2) can be obtained by the asymptotic methods of "large and 
small h " /4, lo/. 

We will limit ourselves to constructing the approximate solution of the integral equation 
(2.2) based on approximating the function H(u)by the expression 

H (u) = u cth Au (If (0) = A-‘) (2.7) 

The approximation (2.7) corresponds to the fundamental properties (1.5) of the function 
K (u) = u-ezf (u). By using (2.6) and (2.7) and the generalized value of the integral 

m 

s cth Au sinutdu=-&-cth& 
0 

(2.8) 

we can rewrite (2.2) in the form 

By introducing new variables and notation by means of the 

p = &, r = evx, cp (E) = Ip (p) 

f' (2) I u (T), a = e+, fi = ev 

(2.9) 

formulas 

(2.10) 

(2.9) is converted to a singular integral equation whose inversion formula is known /ll/. 
Applying this formula and then returning to the original variables and notation of (2.10), 
we obtain 

m=&y [ Q-qqlfl)(chy-eevx)- (2.11) 

On the basis of (2.6) and (2.11) the constant Q can be expressed Fn terms of P. 
For instance, let j(~)=f = censt. In this case 



P 
'l'(')= AhA I-J+(l-ev=)] 
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(2.12) 

It can be shown that the accuracy of the approximate solution (2.12) of the integral 
equation (2.2) is not less than the accuracy of approximation (2.7). 

3. we will examine two problems as examples. 

The problem of the shear of an elastic layer by a strip stamp. An elastic layer of 

thickness h occupies the domain --hgy<O, IzI<=, IzI<m, where 2,y.s are rectangular 

Cartesian coordinates. The upper face of the layer is fastened to a rigid strip (stamp) of 
infinite length of constant width 2~. The domain of strip contact with the layer is determined 
by the conditions y=O, IzI<<, IeI<oo. The upper face of the layer outside the domain of 

contact and the lower face are load-free (it can also be considered that the lower face is 
supported without friction on a rigid foundation). The layer is fastened at infinity for 
I=+= (Fig.Z), or for z=-03, of for *=*:a, (Fig.3). The strip is shifted in the 
direction of the z axis by a force T referred to units of the strip length. 

In the case 
placement vector 

Fig.2 Fig.3 

of pure shear, the function w characterizing the projection of the dis- 
on the z axis satisfies the Laplace equation 

a% ab () 

‘-E 

dtlT aus (3.1) 

We shall use the solution of equation (3.1) in the form of a generalized Fourier trans- 
form 

m+ic 
1 ' 

w(+,v) = 2n 
s 

~(:,~)~-i:rd- 3) D(:, Y) =&(i)sh :I/ +G(:)ch:lf (3.2) 

-m+ic 

By using Hooke's law, we find from (3.2) (p is the shear modulus) 

(3.3) 

(3.4) 

We represent the function Q&,O) in the form 

CC--iC 

r,(;)e-"" d: (3.5) 

Taking account of the representations (3.4) and (3.5) and the boundary condition ~~(0, 
--h) = 0, we express the functions D, and D, in terms of 'c* 

D, (E) = (PC)-'7. (51, D, (0 = (PI)-'cth Chr, (f) (3.6) 

Then using the procedure developed in Sect.1, and the Fourier transform inversion 
formula 

T*(5) = i r(flc'EX at 
-0 

we determine from (3.2), (3.3) and (3.6) 

(3.7) 
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(3.8) 

Here 

After changing to dimensionless variables by means of the formulas 2 = az* and k = og', 
an integral equation for the problem under investigation can be obtained from (3.7) in the 
form (l.l), (1.2), (2.1), (2.2), where 

r (I) = o (z'), K (u) = u-l cth L, H(O) = i (3.10) 
f (2’) = *e/a = con&, li = h/a 

and e is the constant displacement of points of the contact domain (the primes are omitted 
in the formulas mentioned). From (3.8) we determine the force T, to which the stresses 752 
in any section of the layer of height h and unit width orthogonal to the x axis are statically 
equivalent, where 

T,(z) = [ T,zdY (3.11) 
-h 

Substituting 5 in the form of (3.8) into (3.11), we obtain after reduction 

T,(t) = + \ r(E):ign(: - z)dF,T-& T 
--n 

It follows from (3.12) that 

(3.12) 

(3.13) 

Hence it follows that the case of the contour of integration in (1.2) being above the 
real case e>O (below the real axis c<O) corresponds to fastening the layer for +=+m 
(2 = - co). The case of coincidence of the contour of integration in (1.2) with the real axis 
(c=O) corresponds to symmetric fastening of the layer for z=+03. 

For the case under consideration, ~(2) in the form (2.12) is the exact solution of 
integral equation (2.2) for A = 1. Taking account of (2.6), (3.9) and (3.10), from (2.12) we 
obtain an expression determining the stress 7yr in the contact domain between a strip and a 
layer in the form 

T 14-I 
T (2) = ~ I i---p-(l_-,\‘x’n 

hA (z/u) L 
(3.14) 

The problem of the torsion of a cylinder by a rigid belt. Let an elastic infinite 
circular cylinder occupy the domain O<r<R,O<CI<<?n. IzI<oo, where r, 032 are cylindrical 

coordinates, and R is the radius of the cylinder. A rigid belt is set on the cvlinder without 

tension, and the cylinder and belt are interconnected. The 
cylinder is defined by the conditions IzI,in,O<<<<n,r= R. 
domain of contact with the belt is load-free. The cylinder 
or for z= em, or for 2=+-m. A torque of magnitude M is 
M is related to the tangential stress r(z)~r,~(R, e) (lz\Ka) 
between the belt and the cylinder, by the formula 

M = 2nR'T, T = [ r(r)& 

contact domain of the belt and 
The cylinder surface outside the 
is fixed at infinity for Z= +m 
applied to the belt. The moment 
that occur in the contact domain 

(3.15) 

--n 

The following formulas, relating the projection u of the displacement vector on the 9 

axis and the stress Q, to the unknown contact stresses T(Z) can be obtained by using the 

Fourier integral transform: 

(3.16) 
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(3.17) 

Here I,(~) is the cylindrical function of imaginary argument. 
Changing to dimensionless variables by means of the fOXmUlaS Z= a~,:= &the integral 

equation for the problem Under consideration can be obtained from (3.16) in the form (l.l), 
(1.2), (2.1), (2.2), where 

T(E) E cp (E'). I(I) = phe = const, A = R/a (3.18) 

K(u) = viz (u, R), H (0) = 4 

e is the angle of belt rotation (the primes are omitted in the formulas mentioned). Let M, 
be the torque originating in any section of the cylinder orthogonal to its axis. In this case 

M,(z) = 2n 7 '?TBI (r, Z) dr (3.19) 
b 

Inserting T& in the form (3.17) into (3.19), we obtain after evaluating the integrals 

M,(Z) = xR? 1 T (5) [sign (f - z)T i] di (3.20) 
la 

In particular, relationships analogous to (3.13) follow from (3.20) (on replacing T, by 

M,, l’ by 2nRPT, and x by z) I as does also the deduction relative to the location of the 
contour of integration in (1.2), which is analogous to that made when investigating the problem 
of the shear of an elastic layer. 

In this case ppZ) in the form (2.12) is an approximate solution of integral equation 
(2.2). Here A = ~-1 (0) = I!, by virtue of (3.18), and the error in approximation (2.7) does not 
exceed 16% for o<~<w. From (2.12), (3.15) and (3.18) we obtain an approximate expression 
to determine the tangential stresses T(~) in the contact domain between the belt and the 
cylinder in the form 

2Y 
'@)= nR9A (~,'a) 1 

We note that the problem of the tension of an elastic strip with a free lower face (or 
resting without friction on a rigid foundation), a tension-rigid but absolutely flexible cover- 
plate welded to the upper face, as well as the problem of the tension of a tension-rigid 
cylinder but with an absolutely flexible annular cover-plate welded to its surface can be 
considered in the same way. 
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